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Abstract. We present recent developments on the single transversephpsics, in particular,
the Collins mechanism contributions in various hadronactiens, such as semi-inclusive hadron
production in DIS process, azimuthal distribution of hadim high energy jet in pp collisions. We
will demonstrate that the transverse momentum dependent@iinear factorization approaches
are consistent with each other in the description of thei@o#ffects in the semi-inclusive hadron
production in DIS process.

There have been strong experimental interests on tramsspns physics around the
world, from the deep inelastic scattering experiments sagithe HERMES collabo-
ration at DESY, SMC and COMPASS at CERN, and Hall A and CLASLab) the
proton-proton collider experiment from RHIC at Brookhayand the relevangte™
annihilation experiment from BELLE at KEK. In particulahé single-transverse spin
asymmetries (SSA), defined as the spin asymmetries whenpatbdlitransverse spin of
one of the hadrons in the scattering procesfes:(do(S,) —do(-S,))/(do(S,) +
do(—S,)) wheredo is the differential cross section, has attract much atentsreat
progress has been made in the last few years in exploringrtterlying physics for
the SSAs observed in various hadronic processes. In thisval will present, in par-
ticular, the recent developments on the Collins mechanmsntribution to the SSAs in
hadronic processes. The transverse momentum dependéims@agmentation func-
tion describes the azimuthal hadron distribution coreslavith the quark transverse
polarization vector [1]. When combining with the quark saersity distribution, it will
generate the SSAs in the semi-inclusive hadron productiaeep inelastic scattering
(SIDIS) [1] and single inclusive hadron production jp collisions [2]. It also con-
tributes to the azimuthal asymmetry in di-hadron produrctioe™ e~ annihilation pro-
cess [3]. Recent studies have found that the Collins fundfaniversal, meaning that
it is the same in the above processes [2, 4, 5, 6, 7, 8]. Thigibation is very impor-
tant not only because it is a significant contribution to tlis&®bservables in hadronic
processes, but also because its contribution is cruciakttaat the quark transversity
distribution of nucleon, one of the three leading twist dudistributions [9] which is
weakly constrained [10, 11]. The experimental investmagiof these physics have been
recently very active in SIDIS [12] anei"e™ processes [13]. The TMD quark fragmen-



tation function are defined through the following matrix,
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wherea=1,2,3 is a color indexa andf3 are Dirac indices, an@, is the transverse
momentum of the final state hadron with momentyrelative to the fragmenting quark
k. The quark momenturk is dominated by its plus componekit = (k% + k?)/v/2,
and we havePh+ = zk* andk, = —p./z For convenience, we have chosen a vector
n=(1",07,0,) which is along the plus momentum direction. The gauge lifjk=
exp(—ig 5’ dAv-A(Av+&)) is along the directiov conjugate tan [14, 15, 16]. The
leading order expansion of the above matrix leads to twanfieagation functions for a
scalar meson,
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where M is a mass scale chosen for convenience, and the second témasdthe
Collins functionH;-. From the above equation, we can further define the transvers

momentum moment of the Collins functidf(z) = fdszzL Hi (z p.). Byintegrating
out the transverse momentum, the fragmentation functidhomly depend on the
longitudinal momentum fractioa of the quark carried by the final state hadron. It is
straightforward to show that this function can be writteraawist-three matrix element
of the fragmentation function,
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where we have chosen the gauge link in Eq. (1) going4g andFHV is the gluon field
strength tensor and we have suppressed the gauge linksdretliféerent fields and
other indices for simplicity. Since the Collins functiortie same under different gauge
links, we shall obtain the same result if we replaee by —« in the above equation.

From the above definition, we can see thHiz) involves derivative on the quark
field and the field strength tensor explicitly, and it belobg$nore general twist-three
fragmentation functions [17]. For example, extending th@& definition, we can define
a two-variable dependent twist-three fragmentation fioncas,
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wherek” = P*/z andkj = ki — k3. Similarly, we can define &-type fragmentation
function by replacing®9 Wlth FJF"r However, theF andD types are related to each
other by using the equation of motion [18]. Therefore, theyret independent.



These functions are our starting point to formulate the i@slmechanism in the
collinear factorization approach. First, we can calcutagetransverse momentum de-
pendence of the Collins function in the perturbative redimm the twist-three frag-
mentation function$lp (Hg) andH. To do this, we will have to not only calculate the
perturbative diagrams with gluon radiation, but also tdqren the twist expansion and
take into account full contributions from ths andA, operators in the definitions of
Hp andH at this order [18, 8]. An important check of the above resuits universality
property. Indeed, we find that our calculations are independf the gauge link direc-
tionused in EqQ. (1). In particular, we find that the gauge tioks not contribute to a pole
in the Feynman diagrams [8]. Therefore, the gauge linksgytont-co and —co lead to
the same results, and do not generate sign changes betvileeerdiprocesses. This is
consistent with the universality argument for the Collireginentation function [5, 2].
Because of this, this calculation shall apply to all the psses the Collins function
involved. This clearly demonstrates its universality pndp.

Furthermore, we can also calculate the Collins contriloutio the SSA in semi-
inclusive DIS,ep; — €mX, and show that the TMD and collinear factorization ap-
proaches are consistentin the intermediate transverseemtam regiom\gcp < P <
Q, whereAqcp is the typical nonperturbative scale aRgl is the transverse momen-
tum of the final state hadron. Again, the above defigdandH will be our starting
basis to calculate this contribution in the collinear faidation approach. Following the
same procedure as that in [19] for the Sivers effects, we fitithat the single trans-
verse spin dependent differential cross section for thevalpoocess in the collinear
factorization approach can be reproduced by the TMD fazation for the same observ-
able [16] by using the large transverse momentum Collingnfrentation function, and
the known results for the quark transversity distributigrand the soft factor [19]. This
clearly demonstrates that in the intermediate transvei@®entum region, the twist-
three collinear factorization approach and the TMD fae@tion approach provide a
unique picture for the Collins contribution to the SSA in Hani-inclusive DIS [8].

Besides the above semi-inclusive DIS process, we can aldy #te Collins contri-
bution to the azimuthal asymmetric distribution of hadrarsde a high energy jet in
the transversely polarizegap collision,

P(Pa,S1) + p(Rs) — jet(Py) +X — H(R) + X, (5)

where a transversely polarized proton with momen®yrscatters on another proton
with momentumPs, and produces a jet with momentu®. The three momenta of
Pa, Ps and Py form the so-called reaction plane. Inside the producedhet,hadrons
are distributed around the jet axis, where we define trasswy@omentuni,r relative
to the jet axis. The correlation betweBkr and the polarization vectd, introduces
the Collins contribution to the single spin asymmetry irstprocess. Again, we can
perform the calculation of this asymmetry, and find that as Collins function as that
in the semi-inclusive DIS. The key steps in the universalityivation are the eikonal
approximation and the Ward identity. The eikonal approxiorais valid when we
calculate the leading power contributions. The Ward idgmrisure that when we sum
up the diagrams with all possible gluon attachments we glealihe eikonal propagator
from the gauge link in the definition of the fragmentationdtion. The most important



point to apply the Ward identity in the above analysis is thateikonal propagator does
not contribute to the phase needed to generate a nonzero SSA.

This observation is very different from the SSAs associated the parton distribu-
tions, where the eikonal propagators from the gauge linkerparton distribution defini-
tion play very importantrole. Itis the pole of these eikomadpagators that contribute to
the phase needed for a nonzero SSA associated with the tirareeversal-odd parton
distributions, which also predicts a sign difference fa ¢fuark Sivers function between
the SIDIS and Drell-Yan processes.

In conclusion, recent studies have demonstrated thataheuerse momentum depen-
dent and collinear factorization approaches are consigiefor describing the Collins
contribution to the semi-inclusive DIS process in the imediate transverse momentum
region. We have also demonstrated that the Collins fragatientfunction calculated is
universal. This development shall stimulate similar citians to the Collins contri-
butions to the SSAs in other processes, such as in hadronigirod in polarizedpp
scattering and di-hadron correlationdghe™ annihilation.
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